Connecting Algebra to Calculus Indefinite Integrals

Objective: Find Antiderivatives and use basic integral formulas to find Indefinite Integrals

and make connections to Algebra 1 and Algebra 2.

Standards: Algebra 1 2.0, 10.0, 11.0/N-RN.1, N-RN.2, A-SSE.2, Calculus 15.0

Lesson:

Suppose you were asked to find a function F whose derivative is $f(x) = 3x^2$?

Could you go back and find the original function whose derivative is $3x^2$?

Talk to a neighbor, and then I will ask for a non-volunteer to answer.

Since $\frac{d}{dx}x^3 = 3x^2$, then $F(x) = x^3$. We can check by taking the derivative of F(x).

Check:

$$F(x) = x^3$$

$$F'(x) = 3x^2$$

Now, we can see that

$$F'(x) = f(x)$$
$$= 3x^2$$

We call F an antiderivative of f. "The function F is an antiderivative of f."

What if we tried saying that the original function is $F(x) = x^3 + 5$? Does this give us the correct derivative that we are looking for? What about $F(x) = x^3 - 215$?

How many antiderivatives are there for $f(x) = 3x^2$? Well, since the derivative of a constant is equal to 0, there are infinitely many antiderivatives for the function $f(x) = 3x^2$. In general, we can write $F(x) = x^3 + C$ since any constant C will result in

$$F'(x) = f(x)$$
$$= 3x^2$$

We can call $F(x) = x^3 + C$ a "Family of Antiderivatives".

We can always check our work by taking the derivative F.

Exploration: Finding Antiderivatives

With your partner or group, for each derivative, find the original function F. In other words, find the antiderivative of f. Justify your work.

a)
$$f(x) = 2x$$
 $[F(x) = x^2 + C]$

b)
$$f(x) = x \qquad \left[F(x) = \frac{x^2}{2} + C \right]$$

c)
$$f(x) = x^2$$

$$\left[F(x) = \frac{x^3}{3} + C \right]$$

d)
$$f(x) = \frac{1}{x^2}$$

$$\left[F(x) = -\frac{1}{x} + C \right]$$

e)
$$f(x) = \frac{1}{x^3}$$
 $\left[F(x) = -\frac{1}{2x^2} + C \right]$

Students can justify their work by showing that F'(x) = f(x).

Definition of an Antiderivative

A function F is an antiderivative of f on an interval I if F'(x) = f(x) for all x in I.

Note: An antiderivative is also called an Indefinite Integral.

Notation for Indefinite Integrals:

We can substitute to show the "inverse" nature of differentiation and integration.

Since,

$$F'(x) = f(x) \text{ and } \int F'(x) dx = F(x) + C,$$
Then
$$\int f(x) dx = F(x) + C$$
So, if
$$\int f(x) dx = F(x) + C$$
Then
$$\frac{d}{dx} \Big[\int f(x) dx \Big] = f(x)$$

Some Basic Integration Rules (There is a student half-sheet handout at the end of the lesson.)

Differentiation Formula	Integration Formula
$\frac{d}{dx}[C] = 0$	$\int 0 \ dx = C$
$\frac{d}{dx}[kx] = k$	$\int k \ dx = kx + C$
Constant Multiple Rule for Derivatives	Constant Multiple Rule for Integrals
$\frac{d}{dx} [k \cdot f(x)] = k \cdot f'(x)$	$\int k \cdot f(x) \ dx = k \int f(x) \ dx$
Sum and Difference Rule for Derivatives	Sum and Difference Rule for Integrals
$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
Power Rule for Derivatives	Power Rule for Integrals
$\frac{d}{dx} \left[x^n \right] = n x^{n-1}$	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$

Note: Notice that we do not have a Product Rule or Quotient Rule for Integrals at this time.

Example: Find the indefinite integral using two different methods.

$$\int \frac{2x+3}{\sqrt{x}} dx$$

$$\frac{d}{dx} \left[\frac{2}{3} x^{\frac{1}{2}} (2x+9) + C \right]$$

$$= \frac{d}{dx} \left[\frac{4}{3} x^{\frac{3}{2}} + 6x^{\frac{1}{2}} + C \right]$$

$$= \frac{3}{2} \cdot \frac{4}{3} x^{\frac{3}{2}-1} + \frac{1}{2} \cdot 6x^{\frac{1}{2}-1} + 0$$

$$= 2x^{\frac{1}{2}} + 3x^{-\frac{1}{2}}$$

$$= 2\sqrt{x} + \frac{3}{\sqrt{x}}$$

$$= \left(\frac{2\sqrt{x}}{1} \cdot \frac{\sqrt{x}}{\sqrt{x}} \right) + \frac{3}{\sqrt{x}}$$

$$= \frac{2x}{\sqrt{x}} + \frac{3}{\sqrt{x}}$$

$$= \frac{2x+3}{\sqrt{x}} \text{ which is our integrand!}$$

Class Group Activity

In your group, find the indefinite integral using two methods. Check your result by differentiation. Your group will be asked to display your work.

$$1) \qquad \int \frac{x^3 + 3}{x^2} \ dx$$

2)
$$\int \frac{x^2 + 2x - 3}{x^4} \ dx$$

$$3) \qquad \int \frac{x^2 + x + 1}{\sqrt{x}} \ dx$$

$$4) \qquad \int \frac{x^2 - 1}{\sqrt{x^3}} \ dx$$

$$5) \qquad \int \frac{2x+1}{2\sqrt{x}} \ dx$$

6)
$$\int \frac{x^4 + 5x^2 - 7}{\sqrt[3]{x}} dx$$

Solutions to the Class Group Activity

Problem 1

Method 1: Decomposition	Method 2: Rewrite Quotient as a Product
$\int \frac{x^3 + 3}{x^2} dx$ $= \int \left(\frac{x^3}{x^2} + \frac{3}{x^2}\right) dx$ $= \int (x + 3x^{-2}) dx$ $= \int x dx + \int 3x^{-2} dx$ $= \int x dx + 3 \int x^{-2} dx$ $= \frac{x^2}{2} + \frac{3x^{-1}}{-1} + C$ $= \frac{x^2}{2} - \frac{3}{x} + C$ $= \frac{x^2}{2} \cdot \left(\frac{x}{x}\right) - \frac{3}{x} \cdot \left(\frac{2}{2}\right) + C$ $= \frac{x^3}{2x} - \frac{6}{2x} + C$ $= \frac{x^3 - 6}{2x} + C$	$\int \frac{x^3 + 3}{x^2} dx$ $= \int x^{-2} (x^3 + 3) dx$ $= \int (x + 3x^{-2}) dx$ $= \int x dx + \int 3x^{-2} dx$ $= \int x dx + 3 \int x^{-2} dx$ $= \frac{x^2}{2} + \frac{3x^{-1}}{-1} + C$ $= \frac{x^2}{2} - \frac{3}{x} + C$ $= \frac{x^2}{2} \cdot \left(\frac{x}{x}\right) - \frac{3}{x} \cdot \left(\frac{2}{2}\right) + C$ $= \frac{x^3}{2x} - \frac{6}{2x} + C$ $= \frac{x^3 - 6}{2x} + C$

$$\frac{d}{dx} \left[\frac{x^3 - 6}{2x} + C \right]$$

$$= \frac{d}{dx} \left[\frac{x^3}{2x} - \frac{6}{2x} + C \right]$$

$$= \frac{d}{dx} \left[\frac{1}{2} x^2 - 3x^{-1} + C \right]$$

$$= \frac{2}{1} \cdot \frac{1}{2} x^{2-1} - 3 \cdot -1x^{-1-1} + 0$$

$$= x + 3x^{-2}$$

$$= x + \frac{3}{x^2}$$

$$= \frac{x}{1} \cdot \left(\frac{x^2}{x^2} \right) + \frac{3}{x^2}$$

$$= \frac{x^3 + 3}{x^2} \text{ which is our integrand!}$$

Problem 2

Method 1: Decomposition	Method 2: Rewrite Quotient as a Product
$\int \frac{x^2 + 2x - 3}{x^4} dx$	$\int \frac{x^2 + 2x - 3}{x^4} dx$
$= \int \left[\frac{x^2}{x^4} + \frac{2x}{x^4} - \frac{3}{x^4} \right] dx$ $= \int \left[x^{2-4} + 2x^{1-4} - 3x^{-4} \right] dx$	$= \int x^{-4} (x^2 + 2x - 3) dx$ $= \int (x^{-2} + 2x^{-3} - 3x^{-4}) dx$ $= \int x^{-2} dx + 2 \int x^{-3} dx - 3 \int x^{-4} dx$
$= \int \left[x^{-2} + 2x^{-3} - 3x^{-4} \right] dx$ $= \int x^{-2} dx + 2 \int x^{-3} dx - 3 \int x^{-4} dx$	$= \frac{x^{-2+1}}{-2+1} + 2\left[\frac{x^{-3+1}}{-3+1}\right] - 3\left[\frac{x^{-4+1}}{-4+1}\right] + C$
$= \frac{x^{-1}}{-1} + 2\left[\frac{x^{-2}}{-2}\right] - 3\left[\frac{x^{-3}}{-3}\right] + C$	$= -x^{-1} + 2\left[\frac{x^{-2}}{-2}\right] - 3\left[\frac{x^{-3}}{-3}\right] + C$
$= -\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} + C$	$= -x^{-1} - x^{-2} + x^{-3} + C$ $= -\frac{1}{x} - \frac{1}{x^{2}} + \frac{1}{x^{3}} + C$

$$\frac{d}{dx} \left[-\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} + C \right]$$

$$= \frac{d}{dx} \left[-x^{-1} - x^{-2} + x^{-3} + C \right]$$

$$= -\left(-1x^{-1-1} \right) - \left(-2x^{-2-1} \right) + \left(-3x^{-3-1} \right) + 0$$

$$= x^{-2} + 2x^{-3} - 3x^{-4}$$

$$= x^{-4} \left(x^2 + 2x - 3 \right)$$

$$= \frac{x^2 + 2x - 3}{x^4} \quad \text{which is our integrand!}$$

Problem 3:

Method 1: Decomposition	Method 2: Rewrite Quotient as a Product
$\int \frac{x^2 + x + 1}{\sqrt{x}} dx$	$\int \frac{x^2 + x + 1}{\sqrt{x}} dx$
$= \int \left[\frac{x^2}{\sqrt{x}} + \frac{x}{\sqrt{x}} + \frac{1}{\sqrt{x}} \right] dx$	$=\int \frac{x^2+x+1}{x^{\frac{1}{2}}} dx$
$= \int \left[\frac{x^2}{\frac{1}{x^2}} + \frac{x}{x^{\frac{1}{2}}} + \frac{1}{x^{\frac{1}{2}}} \right] dx$	$= \int x^{-\frac{1}{2}} \left[x^2 + x + 1 \right] dx$
$= \int \left[x^{\frac{3}{2}} + x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right] dx$	$ = \int \left[x^{\frac{3}{2}} + x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right] dx $ $ = \int x^{\frac{3}{2}} dx + \int x^{\frac{1}{2}} dx + \int x^{-\frac{1}{2}} dx $
$= \int x^{\frac{3}{2}} dx + \int x^{\frac{1}{2}} dx + \int x^{-\frac{1}{2}} dx$	$= \int x^{2} dx + \int x^{2} dx + \int x^{-2} dx$ $= \frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + \frac{2}{1} x^{\frac{1}{2}} + C$
$= \frac{2}{5}x^{\frac{5}{2}} + \frac{2}{3}x^{\frac{3}{2}} + \frac{2}{1}x^{\frac{1}{2}} + C$	
$= \frac{2}{15}x^{\frac{1}{2}}(3x^2 + 5x + 15) + C$	$= \frac{2}{15}x^{\frac{1}{2}}(3x^2 + 5x + 15) + C$

$$\frac{d}{dx} \left[\frac{2}{15} x^{\frac{1}{2}} (3x^2 + 5x + 15) + C \right]$$

$$= \frac{d}{dx} \left[\frac{2}{5} x^{\frac{5}{2}} + \frac{2}{3} x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C \right]$$

$$= \frac{5}{2} \cdot \frac{2}{5} x^{\frac{5}{2} - 1} + \frac{3}{2} \cdot \frac{2}{3} x^{\frac{3}{2} - 1} + \frac{1}{2} \cdot 2x^{\frac{1}{2} - 1} + 0$$

$$= x^{\frac{3}{2}} + x^{\frac{1}{2}} + x^{-\frac{1}{2}}$$

$$= xx^{\frac{1}{2}} \left(\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} \right) + \left(\frac{\sqrt{x}}{1} \cdot \frac{\sqrt{x}}{\sqrt{x}} \right) + \frac{1}{\sqrt{x}}$$

$$= \frac{x^2}{\sqrt{x}} + \frac{x}{\sqrt{x}} + \frac{1}{\sqrt{x}}$$

$$= \frac{x^2 + x + 1}{\sqrt{x}} \text{ which is our integrand!}$$

Problem 4:

Method 1: Decomposition	Method 2: Rewrite Quotient as a Product
$\int \frac{x^2 - 1}{\sqrt{x^3}} dx$	$\int \frac{x^2 - 1}{\sqrt{x^3}} dx$
$= \int \left[\frac{x^2}{\sqrt{x^3}} - \frac{1}{\sqrt{x^3}} \right] dx$	$=\int \frac{x^2-1}{x^{\frac{3}{2}}} dx$
$= \int \left[\frac{x^2}{\frac{3}{x^2}} - \frac{1}{\frac{3}{x^2}} \right] dx$	$= \int x^{-\frac{3}{2}} (x^2 - 1) dx$
$=\int \left[x^{\frac{1}{2}}-x^{-\frac{3}{2}}\right]dx$	$= \int \left[x^{-\frac{3}{2} + \frac{4}{2}} - x^{-\frac{3}{2}} (1) \right] dx$
$= \int x^{\frac{1}{2}} dx - \int x^{-\frac{3}{2}} dx$	$= \int x^{\frac{1}{2}} dx - \int x^{-\frac{3}{2}} dx$
$= \frac{2}{3}x^{\frac{1}{2} + \frac{2}{2}} - \left(-\frac{2}{1}\right)x^{-\frac{3}{2} + \frac{2}{2}} + C$	$= \frac{2}{3}x^{\frac{1}{2} + \frac{2}{2}} - \left(-\frac{2}{1}\right)x^{-\frac{3}{2} + \frac{2}{2}} + C$
$= \frac{2}{3}x^{\frac{3}{2}} + 2x^{-\frac{1}{2}} + C$	$= \frac{2}{3}x^{\frac{3}{2}} + 2x^{-\frac{1}{2}} + C$
$= \frac{2}{3}x^{-\frac{1}{2}}(x^2+3)+C$	$= \frac{2}{3}x^{-\frac{1}{2}}(x^2+3)+C$
$=\frac{2(x^2+3)}{3\sqrt{x}}+C$	$= \frac{2(x^2+3)}{3\sqrt{x}} + C$

Checking the result by differentiation is shown on the next page.

$$\frac{d}{dx} \left[\frac{2(x^2 + 3)}{3\sqrt{x}} + C \right]$$

$$= \frac{d}{dx} \left[\frac{2}{3} x^{-\frac{1}{2}} (x^2 + 3) + C \right]$$

$$= \frac{d}{dx} \left[\frac{2}{3} x^{\frac{3}{2}} + 2x^{-\frac{1}{2}} + C \right]$$

$$= \frac{3}{2} \left(\frac{2}{3} x^{\frac{3}{2} - \frac{2}{2}} \right) + \left(-\frac{1}{2} \right) \left(2x^{-\frac{1}{2} - \frac{2}{2}} \right) + 0$$

$$= x^{\frac{1}{2}} - x^{-\frac{3}{2}}$$

$$= x^{\frac{1}{2}} \left(\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} \right) - \frac{1}{x^{\frac{3}{2}}}$$

$$= \frac{x}{x^{\frac{1}{2}}} \left(\frac{x^{\frac{1}{2}}}{x^{\frac{2}{2}}} \right) - \frac{1}{x^{\frac{3}{2}}}$$

$$= \frac{x}{x^{\frac{1}{2}}} \left(\frac{x^{\frac{2}{2}}}{x^{\frac{2}{2}}} \right) - \frac{1}{x^{\frac{3}{2}}}$$

$$= \frac{x^2}{\sqrt[2]{x^3}} - \frac{1}{\sqrt[2]{x^3}}$$

$$= \frac{x^2 - 1}{\sqrt[2]{x^3}} \text{ which is our integrand!}$$

Problem 5:

Method 1: Decomposition	Method 2: Rewrite Quotient as a Product
$\int \frac{2x+1}{2\sqrt{x}} dx$	$\int \frac{2x+1}{2\sqrt{x}} dx$
$= \int \left[\frac{2x}{2\sqrt{x}} + \frac{1}{2\sqrt{x}} \right] dx$	$=\int \frac{2x+1}{2x^{\frac{1}{2}}} dx$
$= \int \left[\frac{2x}{2x^{\frac{1}{2}}} + \frac{1}{2x^{\frac{1}{2}}} \right] dx$	$= \int \frac{x^{-\frac{1}{2}}}{2} (2x+1) dx$
$= \int \left[x^{\frac{1}{2}} + \frac{1}{2} x^{-\frac{1}{2}} \right] dx$	$=\int \left(x^{\frac{1}{2}} + \frac{x^{-\frac{1}{2}}}{2}\right) dx$
$= \int x^{\frac{1}{2}} dx + \frac{1}{2} \int x^{-\frac{1}{2}} dx$	$= \int x^{\frac{1}{2}} dx + \frac{1}{2} \int x^{-\frac{1}{2}} dx$
$= \frac{2}{3}x^{\frac{1}{2}+\frac{2}{2}} + \frac{1}{2}\left(\frac{2}{1}x^{-\frac{1}{2}+\frac{2}{2}}\right) + C$	$= \frac{2}{3}x^{\frac{1}{2} + \frac{2}{2}} + \frac{1}{2}\left(\frac{2}{1}x^{-\frac{1}{2} + \frac{2}{2}}\right) + C$
$= \frac{2}{3}x^{\frac{3}{2}} + x^{\frac{1}{2}} + C$	$= \frac{2}{3}x^{\frac{3}{2}} + x^{\frac{1}{2}} + C$
$= \frac{1}{3}x^{\frac{1}{2}}(2x+3)+C$	$= \frac{1}{3}x^{\frac{1}{2}}(2x+3) + C$

$$\frac{d}{dx} \left[\frac{1}{3} x^{\frac{1}{2}} (2x+3) + C \right]$$

$$= \frac{d}{dx} \left[\frac{2}{3} x^{\frac{3}{2}} + x^{\frac{1}{2}} + C \right]$$

$$= \frac{3}{2} \left(\frac{2}{3} x^{\frac{3}{2} - \frac{2}{2}} \right) + \frac{1}{2} \left(x^{\frac{1}{2} - \frac{2}{2}} \right) + 0$$

$$= x^{\frac{1}{2}} + \frac{1}{2} x^{-\frac{1}{2}}$$

$$= x^{\frac{1}{2}} + \frac{1}{2x^{\frac{1}{2}}}$$

$$= \frac{\sqrt{x}}{1} \left(\frac{\sqrt{x}}{\sqrt{x}} \right) + \frac{1}{2\sqrt{x}}$$

$$= \frac{x}{\sqrt{x}} \left(\frac{2}{2} \right) + \frac{1}{2\sqrt{x}}$$

$$= \frac{2x+1}{2\sqrt{x}} \text{ which is our integrand!}$$

Problem 6:

$$\frac{d}{dx} \left[\frac{3}{56} x^{\frac{2}{3}} (4x^4 + 35x^2 - 196) + C \right]$$

$$= \frac{d}{dx} \left[\frac{3}{14} x^{\frac{14}{3}} + \frac{15}{8} x^{\frac{8}{3}} - \frac{21}{2} x^{\frac{2}{3}} + C \right]$$

$$= x^{\frac{11}{3}} + \left(\frac{8}{3} \cdot \frac{15}{8} \right) x^{\frac{5}{3}} - \left(\frac{2}{3} \cdot \frac{21}{2} \right) x^{-\frac{1}{3}} + 0$$

$$= x^{\frac{11}{3}} + 5x^{\frac{5}{3}} - 7x^{-\frac{1}{3}}$$

$$= \frac{x^{\frac{11}{3}}}{1} + \frac{5x^{\frac{5}{3}}}{1} - \frac{7}{x^{\frac{1}{3}}}$$

$$= \left(\frac{x^{\frac{11}{3}}}{1} \cdot \frac{x^{\frac{1}{3}}}{x^{\frac{1}{3}}} \right) + \left(\frac{5x^{\frac{5}{3}}}{1} \cdot \frac{x^{\frac{1}{3}}}{x^{\frac{1}{3}}} \right) - \frac{7}{x^{\frac{1}{3}}}$$

$$= \frac{x^4 + 5x^2 - 7}{x^{\frac{1}{3}}}$$

$$= \frac{x^4 + 5x^2 - 7}{\sqrt[3]{x}} \text{ which is our integrand!}$$

Differentiation Formula	Integration Formula
$\frac{d}{dx}[C] = 0$	$\int 0 \ dx = C$
$\frac{d}{dx}[kx] = k$	$\int k \ dx = kx + C$
Constant Multiple Rule for Derivatives	Constant Multiple Rule for Integrals
$\frac{d}{dx} [k \cdot f(x)] = k \cdot f'(x)$	$\int k \cdot f(x) \ dx = k \int f(x) \ dx$
Sum and Difference Rule for Derivatives	Sum and Difference Rule for Integrals
$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
Power Rule for Derivatives	Power Rule for Integrals
$\frac{d}{dx} \left[x^n \right] = n x^{n-1}$	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$

Differentiation Formula	Integration Formula
$\frac{d}{dx}[C] = 0$	$\int 0 \ dx = C$
$\frac{d}{dx}[kx] = k$	$\int k \ dx = kx + C$
Constant Multiple Rule for Derivatives	Constant Multiple Rule for Integrals
$\frac{d}{dx} [k \cdot f(x)] = k \cdot f'(x)$	$\int k \cdot f(x) \ dx = k \int f(x) \ dx$
Sum and Difference Rule for Derivatives	Sum and Difference Rule for Integrals
$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
Power Rule for Derivatives	Power Rule for Integrals
$\frac{d}{dx}\left[x^n\right] = nx^{n-1}$	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$

Warm Up

CCSS: Calculus 4.4

Which of the following are true for this $f(x) = -2x^3 + 6x^2 + 18x + 1$? polynomial

A.
$$f'(x) = -6x^3 + 12x^2 + 18x$$

B.
$$f'(x) = -6x^2 + 12x + 18$$

C.
$$f'(x) = -\frac{2}{3}x^2 - 3x + 18$$

D.
$$f'(x) = -6(x+1)(x-3)$$

E.
$$f'(x) = -6(x-1)(2x+3)$$

Review: Calculus 4.0 **Power Rule for Derivatives:**

Given:

$$\frac{d}{dx}x^n = nx^{n-1}$$

Find the derivative:

a)
$$\frac{d}{dx}x^{2}$$

b)
$$\frac{d}{dx}\sqrt{x}$$

c)
$$\frac{d}{dx} \left[\frac{1}{x^4} \right]$$

Recall:

Power Rule for Derivatives: $f(x) = x^n$ $f'(x) = nx^{n-1}$

$$f'(x) = nx^{n-1}$$

Solutions to Warm-Up

Quadrant I

a)
$$\frac{d}{dx}x^5 = 5x^4$$

b)
$$\frac{d}{dx}\sqrt{x}$$

$$= \frac{d}{dx}x^{\frac{1}{2}}$$

$$= \frac{1}{2}x^{\frac{1}{2}-1}$$

$$= \frac{1}{2}x^{-\frac{1}{2}}$$

$$= \frac{1}{2\sqrt{x}}$$

c)
$$\frac{d}{dx} \frac{1}{x^4}$$

$$= \frac{d}{dx} x^{-4}$$

$$= -4x^{-4-1}$$

$$= -4x^{-5}$$

$$= -\frac{4}{x^5}$$

Quadrant II

$$f(x) = -2x^3 + 6x^2 + 18x + 1$$

$$f'(x) = -6x^2 + 12x + 18 \implies \text{This makes choice B true}$$

$$f'(x) = -6(x^2 - 2x - 3)$$

$$f'(x) = -6(x + 1)(x - 3) \implies \text{This makes choice D true}$$

Choices A, C and E are all false